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Abstract—Writing and solving the inverse kinematics equa-

tions of a robot is a cumbersome task. Furthermore, an analytic
solution exists only for an ideal model and only if the structure
of the robot meets certain criteria. If enhanced positioning
precision is required, the robot needs to be calibrated. This
eliminates most of the errors due to the differences in the ideal
model and the real robot. Calibration methods require additional
computations (usually of iterative nature) in the real-time cycle
of the control system and are only capable of dealing with
small differences between the ideal model and the real robot.
In this paper a supervised learning based approach is proposed
to solve the inverse kinematics problem and the calibration.
Instead of creating and ideal model for a series of robots and
calibrating each of them individually afterwards, the inverse
kinematics function is learned using a neural network and so,
it is tailored to one given robot, already including errors due to
manufacturing and/or assembly tolerances. Moreover, it can also
work for structures for which no analytic solution is possible.
The preliminary results of this research are presented in this
paper, covering two simple robot structures, a planar 2 DOF
and a spatial 3 DOF structure, both with and without artificially
introduced assembly errors (joint misalignments) which make
analytical modeling unfeasible.

I. INTRODUCTION

The number of industrial robots in use is continuously
increasing [1]. Besides the industrial robots, hobby or toy roots
for the ”do it yourself” community are also more and more
common. Each time a robot’s mechanical structure is used in
any way (modeling, simulation, control, etc.) the solution to
the kinematic problem (either forward or reverse) is required.
If the precision of the robot is of concern, calibration has
to be included. Using calibration, the manufacturing and/or
assembly tolerances of a robot are corrected (in some cases,
temperature and load compensation might also be regarded).
While the kinematic model is ideal and can be used for all
robots of the same make and model, calibration is always
unique to one robot and works similarly to a system identifi-
cation process, for the exact geometry of the robot. It involves
fixed, known references in the work space of the robot or a
precise measurement system which gives accurate information
about the pose of the end-effector and so, the differences
between the real robot and the ideal kinematic model can be
identified, usually by numerical iterative methods.

In this paper a machine learning approach is proposed
to solve the (inverse) kinematics and calibration problems
together. Instead of using the ideal kinematic model and
improving the precision of the robot though calibration, we
propose to learn the inverse kinematics (including the er-
rors due to manufacturing and assembly tolerances) function,
which is then associated with one single robot, not with a
robot make and model.

Instead of a calibration process where only the differences
to the ideal kinematic model are identified, the (inverse) kine-
matic function of the robot is learned. It is expected that this
process will require more time and different equipment then
the calibration process. However, the process itself is similar
in nature to the calibration process. The robot, monitored by
an external sensor system, executes predefined motions (e.g.
space filling curves). Using this approach, the strict tolerances
for manufacturing and assembly can be relaxed because the
calibration method is not anymore restricted to small geo-
metrical errors. By applying machine learning not just to the
calibration problem but also to the inverse kinematics problem,
the structure of the robot can also change, since special
requirements that allow the analytical solution of the inverse
kinematics problem (e.g. the intersection of the last three axes
in one point) can be disregarded. The advantages and chal-
lenges of the this approach along with a possible applications
have been presented in [4]. This paper presents preliminary
results in solving the inverse kinematics problem using neural
networks. Ideal robot kinematics models are altered to include
errors due to assembly and manufacturing tolerances. Both
ideal and altered models are used to generate the training
data for the machine learning process. The neural networks
are trained for solving the inverse kinematics problem and
afterwards their performance is evaluated.

II. STATE OF THE ART

Many papers in the scientific literature deal with problems
related to inverse kinematics and machine learning. Many
of these target learning only a certain trajectory, not the
general inverse kinematics function of a robot [3], [9], [5].
In these papers it is shown that by learning a trajectory a
higher precision can be achieved as when in executing the
pre-programmed trajectory the classical way. However, these
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cannot be integrated into today’s robot controllers which heav-
ily rely in the inverse kinematics transformation [12]. Learning
the inverse kinematics problem using neural networks can also
be found in the scientific literature. In [8] and in [6] a 3
DOF planar inverse kinematics problem is learned, in [7] a
6 DOF robot using specialized neural network. However, in
these works only the idealized kinematic model is considered.

Not only supervised learning is used for learning inverse
kinematics in the scientific literature. In [2], using reinforce-
ment learning, a goal seeking like behavior can be defined that
can take a robot to is goal state with good precision. This and
similar approaches [10] also cannot be integrated in a classical
industrial robot control architecture.

The approach proposed in this paper for learning the inverse
kinematics function of a robot is designed with today’s robot
controller structures in mind. This way existing robot con-
troller software and hardware architectures can be left mostly
unchanged but these can still benefit from this novel approach.
Programming of the robot remains the same as before. The
mathematical function currently based on implicit or explicit
equations should be exchanged for a neural network, how-
ever the inputs and outputs of the function do not change.
Furthermore, real-time execution capability is expected to be
improved, when compared to iterative solution methods, given
the deterministic nature of neural networks in the exploitation
stage.

III. CONCEPT

The main idea behind this research is to eliminate the need
for developing (inverse) kinematic equation by hand and then
adopting these to a given robot using calibration. Instead,
in a way, the calibration process is extended. It is altered,
so it does not only identifying the difference to the ideal
kinematic model, it becomes a supervised learning process,
learning the whole kinematic transformation of the robot,
with manufacturing tolerances and assembly misalignments
included. In figure 1 the overall architecture of the approach
is presented. As it can be seen, the general architecture of a
robot controller remains intact. The only changes are to the
transformations and a further module is added which handles
the tasks related to learning.

A. Obtaining The Training Set

In order to carry out the learning task, without any previous
model, at a future stage of the research, a camera system is
planned to be used to track the end-effector (from multiple
points of view). (At the current stage of the research, errors
are artificially included in simple forward kinematic models,
to emulate assembly tolerances.) This measurement, together
with the joint angles, based on signals coming from the joint
sensors (usually encoders), will constitute the training set. In
order to build up a training set which covers the whole work
space, the motors are moved to describe so called space filling
curves [11]. During these movements the joint angles and the
end-effector coordinates are recorded by the Learning module
and thus the training set is obtained. This training set includes

all imperfections due to tolerances for a given robot. It is
only valid for that given robot. The training set will contain
duplicates in the Cartesian coordinate part, since a given end-
effector pose in almost all cases and robot structures can be
reached with more then one joint configuration. In this step
everything is recorded and no filtering is applied to the data. It
can expected that the training set requires a significant amount
of memory. This is not considered a problem, since not the
whole training set needs to be in memory, it can be written
to a local hard disk or database on the network. Furthermore,
memory is getting more and more available.

B. Supervised Learning

If the training set exists, the supervised learning process
can be carried out. A first step is to select the supervised
learning method. Support Vector Machines (SVN) and Neural
Networks (NN) are popular supervised learning methods. The
approach works regardless of the chosen method (although
SVN might require significantly more memory). Since the
training set has a serialized form, the training process does
not necessarily has to be carried out on the robot controller.
Running the training in the cloud or on GPU brings faster
results and more available memory.

1) Multiple Solutions: As in the case when the inverse
kinematics problem, the decision to use one or the other
solution has to come from the user. For industrial robots this in
many cases this is determined though the so called status and
turn. These specify which solution should be calculated or, in
other words, which formula has to be used to calculate a joint
angle. In fact, the the inverse kinematics solutions coexists,
but there is a selection made, based on external input, which
of them is preferred in the current context.

The status and turn give an indication about which formulas
have to be applied. This decision, made joint angle after
joint angle can also be formulated in a more centralized
manner. The choice to use one or the other solution can be
made before or after the function definition. If made before,
using all combinations of angles, a number of needed inverse
kinematic functions result. Each of these contains only one
solution and there are as many functions as possible inverse
kinematic solutions. In the regions of the work space, where
less solutions are possible some of these functions either return
the same value as other (e.g. in singular poses), or these return
complex solution (hence the target point is out of reach for
one of the functions).

Dividing up the training set based on the joint angles (e.g.
first joint angle negative or positive) results in a number
of separate training data sets which do not carry multiple
solutions. The ranges (both Cartesian and joint space) for
which the training set has valid angles has to be stored. The
training can be applied to each of these separate data set
and the decision which one to choose happens exactly the
same way as it does with current, analytic inverse kinematic
functions.
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Fig. 1. The simplified overall architecture of the proposed concept

C. Precision Requirements

To be able to use the learned inverse kinematics it has to
offer similar or better precision then its analytic counterpart.
Please note that in this case the precision of the real robot
is of interest not of the ideal model. Typical precision of
robots is ±0.1mm, high accuracy robots have a precision of
±0.05mm.

IV. IMPLEMENTATION

At this stage of the research, simple examples have been
considered, in order to examine how the NNs perform when
learning the inverse kinematic function of a planar 2RR serial
robot and a spatial 3RRR serial robot. Simulations have been
carried out to compare the precision of the obtained NNs.

The selected neural network for learning the inverse kine-
matics problem is a feedforward network, with hidden layers,
each having 50 neuron and TANSIG activation function, as
presented in figure 2. The learning method was Levenberg-
Marquardt with adaptive learning rate. The implementation
and training has been carried out in Matlab, using the Neural
Network Toolbox. The input to the neural network is the X
and Y coordinate of the robot, additionally adding

√
X2 + Y 2

ad a third input. For the 3 DOF case X , Y and Z coordinates,
as well a

√
X2 + Y 2 + Z2 are the inputs. Hence the 3 or 4

input neurons.
The output of the networks are not the joint angles directly.

Instead, the sine and cosine functions of the 2 (or 3 in the
3 DOF case) are output from the networks, hence the 4 or 6
output neurons. Additionally, the atan2() function is used to
find the joint angle. At this stage no explicit feature scaling or
batch normalization has been used. These can further improve
the results. In order to avoid the over fitting problem, 60%
of the available training set has been used for training the
network, 20% for testing and 20% for validation.

A. Obtaining the Training Set

Four robot kinematic models have been considered. The
first two models are based on a 2 DOF 2RR planar serial
robot. DH parameters presented in table I, with and without
artificially introduced manufacturing tolerances and joint as-
sembly alignment errors which make analytical modeling of
the structure unfeasible. The latter two cases are based on a
3 DOF 3RRR spatial serial robot, DH parameters presented
in table II, also in this case, with and without artificially
introduced joint alignment errors.

TABLE I
THE DH PARAMETER TABLE OF THE 2 DOF ROBOT

Linkage θ d α a
1 q1 0 0 250
2 q2 0 0 250

TABLE II
THE DH PARAMETER TABLE OF THE 3 DOF ROBOT

Linkage θ d α a
1 q1 250 -π/2 0
2 q2 0 0 250
3 q3 0 0 50

The training set have been obtained using a homogeneous
discretization of the joint space and the forward kinematics
model. In the case of the models with introduced alignment
errors, the following model has been used:

H = E × T1 × E × T2 ∗ E × T3 (1)

where H is the overall 4x4 transformation matrix, Ti are the
DH transformation matrices and E is the misalignment 4x4
transformation matrix, obtained as a 6 DOF transformation:

E = Tx × Ty × Tz ×Rx ×Ry ×Rz (2)

having every translation 2mm and every rotation 2 deg in
order to reflect a poorly assembles or manufactured robot.
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Fig. 2. The neural networks used for learning the inverse kinematic function, for 2DOF (upper) and 3DOF (lower)

The discretized area of the workspace for the 2 DOF case
covers the range:

−π/2 < q1 < 0; 0 < q2 < π/2 (3)

with a 0.01rad discretization, resulting in approximately
25.000 data points.

In the 3 DOF case, the covered workspace area is

−π/10 < q1 < π/10;−π/2 < q2 < 0; 0 < q3 < π2 (4)

with a 0.03rad discretization, resulting in approx. 75.000
data points. As it can be observed, the area covered only
presents 1 solution for the inverse kinematics problem. This
is in line with the concept description above, solving the
solution multiplicity problem was not the in the scope of these
experiments.

B. Learning the IK Function

After obtaining the training data sets the NN have been
trained to learn the inverse kinematics function. The training
process have been carried out on PCs with 8 GB of RAM
and Intel I7 processor, using Matlab Parallel Toolbox with 4
workers. The training performance has been measured by the
mean squared error (MSE) function and an MSE value lower
then 1e − 09 was the learning target in all cases. Learning
times have 5 to 7 hours. It is assumed that this can be
greatly improved by using GPU accelerated learning instead
of parallel CPU learning.

V. RESULTS

After training the neural networks, their performance has
been compared to the forward kinematics function and the
errors have been expressed as positioning errors in Cartesian
space. Another set of test data has been generated, with
a different grid size (not integer multiple) of the former
discretization step. The joint angles have been converted to
Cartesian space with the forward kinematics function. From
here, the trained NN has been used to convert the Cartesian
space values to joint space. These obtained joint space values
have been converted back to Cartesian space using the same
forward kinematics function, obtaining this way noter set of

Cartesian positions. The difference between the two sets of
Cartesian space values reflect the inaccuracies of the NN.

A. 2 DOF without joint misalignments
In this test case 99.16% of validation points have been below

a Cartesian error threshold of 0.1 mm. 80.4% of point below
a Cartesian error of 0.01 mm and 12% of points below a
Cartesian error of 0.001 mm. Figure 3 shows the histogram
of Cartesian errors and figure 4 shows the positioning errors
in the workspace of the robot. As it can be observed the
problematic area is the margin of the workspace, where due to
homogeneous discretization in the joint space, only very few
data points have been generated.

Fig. 3. Error histogram of the 2DOF case without joint misalignment

B. 2 DOF with joint misalignments
In this test case very similar results have been obtained.

98.98% of validation points are below a Cartesian error of
0.1mm. 83% of point are below a Cartesian error of 0.01 mm
and 12% of points are below o Cartesian error of 0.001mm.
Figure 5 shows the histogram of Cartesian errors and figure 6
shows the positioning errors in the workspace of the robot.
Also here it can be observed the problematic area is the margin
of the workspace, where due to homogeneous discretization in
the joint space, only very few data points have been generated.
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Fig. 4. Location and size of positioning errors in the workspace of the 2DOF case without joint misalignment

Fig. 5. Error histogram of the 2DOF case with joint misalignment

C. 3 DOF without joint misalignments

The results for this test case are statistically not different
from the results of the next test case.

D. 3 DOF with joint misalignments

In this test case the results show that 99.95% of the
validation points (not overlapping the training data) has a
Cartesian error less then 0.1 mm, for 74.14% of points the
positioning error using the NN inverse kinematics is smaller
then 0.01 mm and for 3.25% of the test points it is smaller
then 0.001 mm. The histogram showing the distribution of the
positioning errors of the data set is presented in figure 7. The
execution time of the trained network in Matlab (the NN as in-
memory object, single threaded, without the Parallel Toolbox)
varied between 0.009 s and 0.01 seconds. It is expected that

in a real-time operating system the execution time and jitter
will be significantly lower.

VI. CONCLUSIONS

When comparing the errors of the inverse kinematic func-
tions with and without joint misalignment errors, it can be
observed that for the neural network, from the results point
of view, the misalignment does not make a difference. Hence
further calibration methods will not be needed. The obtained
precision shows that without prior network design and dimen-
sioning promising results can be obtained.

In this paper a method to learn the inverse kinematic func-
tion of robots has been proposed. Furthermore, an architecture
that is compatible with today’s robot controller is suggested.
This way, the way the robot is used and programmed does not
have to be changed. Once the inverse kinematics is learned
the robot will behave the same way as if it would be equipped
with an analytic solution for the inverse kinematics problem.
The learning process does not have to be carried out on the
robot controller itself. Cloud based learning is expected to
offer more memory and less computation time. The expected
result of this approach is a more precise robot model, therefore
a more precise robot, looser manufacturing tolerances and new
robot structures, since no wrist joint is necessary for solving
the inverse problem.

As the preliminary results are promising, the next step will
be examine how neural networks size, network type, number of
layers and activation function affect the training precision and
execution time of the network. Furthermore, the homogeneous
discretization in the joint space should be improved in order
to improve the performance of the NN at the margins of the
workspace.. The distant goal is to learn also higher order
kinematic functions (velocities, accelerations) and add static
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Fig. 6. Location and size of positioning errors in the workspace of the 2DOF case with joint misalignment

Fig. 7. Error histogram of the 3DOF case with joint misalignment

load compensation to the neural network. Network types other
then feed forward networks are considered for these tasks.

Using this approach the need for kinematic modeling will
be eliminated therefore any axis configuration of a serial chain
will be usable as a robot structure. Furthermore, manufacturing
and assembly tolerances will not play an important role,
therefore robots will become less costly to produce. A robot
screwed together from scrap metal can have the same precision
as today’s aluminum cast structures.
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