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Abstract—Handling of deformable objects with industrial
robots holds many unresolved challenges. Especially, describing
and predicting the deformed state is computationally expensive
and therefore difficult under the requirements of manufacturing
environments. A concept for a simulation-based approach to-
wards bin picking of deformable objects, is presented in this
paper. The emphasis of the approach lies on the subtask of
localisation and pose estimation, but regards the context of
gripping and manipulation as well. A multi-body modelling
approach is considered to model the deformation of soft objects.
The basic idea is to provide a reduced order model accounting
for the requirements of short computation times. At last, the
implementation of the proposed bin picking system is discussed
and further research activities with the presented system are
outlined.

I. INTRODUCTION

The interaction between rigid robotic devices and soft
materials like human tissues, work pieces made of rubber, or
textiles gives rise to numerous challenges due to the complex
material behaviour.

To take on these challenges an International Research
Training Group (IRTG) between the University of Auckland
and the University of Stuttgart has been established recently.
This joint research program named “Soft Tissue Robotics”
pursues to push the boundaries of current robot technology by
the means of an interdisciplinary approach incorporating the
fields of simulation technologies, cyber-physical engineering
approaches, robotic device technology, and biomedical engi-
neering.

In contrast to rigid bodies, the state of a deformable object
is not defined by 6 degrees of freedom (DOF), but literally an
infinite number of DOFs. They describe the current shape of
the deformable objects under the given constraints . Hence, in
comparison to the manipulation of a rigid object, the shape of a
deformable object is neither exactly known nor constant. This
exacerbates the automated localisation and handling signifi-
cantly [1]. Whereas rigid objects are localised by incorporating
commonly available CAD data models and matching them
with the acquired image data [2], an appropriate data model
capturing the manifold appearances of a deformable object has
to be found primarily.
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Despite these challenges, automated processing of de-
formable objects such as seals, hoses, ropes, wires, textiles
or cloths is highly desirable from the manufacturing point of
view [3]. Especially, handling tasks are of particular interest
since about 55% of the applications which involve industrial
robots include object handling [4]. Specific manual handling
examples, showing potential to be automated with robots, are
wiring of switch cabinets which takes up to 50% of the total
building time [5], and mounting of wire harnesses in the
automotive industry where a higher degree of automation is
long desired [6].

II. STATE OF THE ART FOR BIN PICKING DEFORMABLE
OBJECTS

A popular task in the development of robotic automation,
comprising relevant requirements related to automation of
object handling, is bin picking [7]. It allows for facing the
arising challenges in a well-defined environment. Thus, a bin
picking scenario is considered as ideal use case where the
interaction between rigid robotic devices and soft objects can
be observed within a variety of tasks, such as localisation,
finding appropriate gripping positions and applying control or
manipulation strategies.
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Figure 1. Process of bin picking derived from [8]. Starting with the data
acquisition the process is followed by the object localisation and object
grasping. After grasping and performing a predefined manipulation task the
process is finished and starts anew with another object from the bin.

In the following, a short overview of relevant literature
related to bin picking soft objects is provided. Existing
approaches and successfully implemented solutions are dis-
cussed. Since the bin picking problem is mainly investigated
for rigid objects, the review refers primarily towards bin
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picking approaches concerning rigid objects in Subsection II-A
and inquires the soft material modelling perspective in Sub-
section II-B.

A. Bin picking

The task of bin picking can be divided in several subtasks.
These tasks are data acquisition, object localisation, grasp
point identification and transport to a target position for
manipulation. Among them, the localisation is considered most
challenging according to [8] and for this reason it will be the
main focus of our research.

Reliable localisation of rigid objects is usually based on 2D
intensity or 3D distance images [9]. A successful implemen-
tation allowing the localisation of piston rods, using 3D depth
data, is accomplished in [2]. For the pose estimation a random
sample matching (RANSAM) approach which is based on
the random sampling consensus algorithm (RANSAC) [10]
is used. Another solution is presented by Palzkill [11], who
uses construction heuristics in combination with a Generalised
Hough Transformation for the object pose detection. In [12]
non-uniform objects are localised by approximating the ob-
tained point cloud data with cylinders, proving that localisation
of objects with unknown shapes is feasible as long as they can
be approximated by geometric primitives.

In contrast to localisation of rigid objects, little research
has focused on the localisation and estimation of the pose of
deformable objects. Nevertheless, some approaches for locali-
sation of deformable objects have been presented. For example
a neural network based approach where the recognition is
based on a classification with self-organizing maps (SOM) is
presented in [13]. A drawback of this approach is the need for
texture or colour properties which are not always available.
In [14] a towel folding robot, detecting grasping points by
using depth discontinuities of acquired stereo image data, is
introduced. However, this approach is restricted to 2D planar
geometries.

It can be concluded that a major issue evading the appli-
cability of matching algorithms, is the uncertainty about the
shapes of a deformable object, resulting from the infinite num-
ber of DOFs. We conjecture to enable localisation and pose
estimation of deformable objects by abstracting the objects
within an appropriate modelling approach. The model should
capture only the essential characteristics of the deformation
behaviour and therefore reduce the DOFs to a manageable
amount. Coupling this model of largely reduced order with
simulation technology provides an appropriate data model
which includes the relevant information about potential shapes
for the matching algorithm. Thus, finding an appropriate mod-
elling approach is key to apply existing matching algorithms
for the localisation of deformable objects.

B. Material modelling of soft tissues

Soft tissues such as muscle tissue or organs have certain
analogies to technical work pieces built from rubber, polymers,
or fibre-reinforced composites. This analogy is expressed
within the underlying constitutive models ranging from linear
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elastic models, over non-linear elastic models (hyperelasticity),
to time-dependent viscoelastic, or plastic models [15]-[17].
Therefore, the modelling approaches for soft tissues coming
from the field of biomechanics and biomedical research are
a valuable endorsement for the simulation-based approach
within the proposed bin picking scenario, which originates
rather from industrial manufacturing. Hence, common mod-
elling approaches governed by a biomedical perspective are
discussed in the following.

The equations of motion of a soft material are described by
partial differential equations (PDE) [18]. These can be derived
from continuum mechanics with the aid of the Lagrange’s
equations of the second kind while respecting the constitutive
behaviour of the material. Since PDEs are commonly not
solvable analytically they are usually discretised in space with
the well-known Finite Elements Method (FEM) [19]-[21] or
the Finite Differences Method (FDM) [18], [22]. The resulting
set of coupled ordinary differential equations (ODE) is then
integrated numerically.

The FEM method is widely spread in the medical field
where accurate models, capturing the detailed behaviour of
soft tissues including large deformations, are desired [15].
Thus, much research has been done in improving the accuracy
and lowering the computation times of soft material FEM
models [20], [21], [23], [24]. Despite many efforts in reducing
the computational cost of the FEM models, the computation
times remain a major drawback of this modelling approach
[25].

A method developed to account for fast computation times,
as an alternative to FEM, is mass-spring systems (MSS). MSS
consist of a network of point masses connected by spring
and damper elements, representing the deformable body. The
stiffness and damping coefficients of the interconnections are
determined in a way that the model mimics the soft tissue’s
deformation behaviour [26]. Due to the fast computation times,
this method is frequently used in computer graphics and game
physics [22] as well as in surgical applications [27]. A major
disadvantage of the MSS approach is, that it is not based on a
constitutive material model and therefore, there is no guarantee
that deformation behaviour of the deformable object is cor-
rectly modelled [27]. Especially, capturing large deformations
of multiphase materials is problematic in terms of determining
appropriate model parameters and model topologies [24], [28].

Another approach, coming from classical mechanics, is
multi-body systems (MBS). MBS are closely related to MSS
and frequently used in biodynamic modelling. They consist of
rigid bodies coupled by spring and damper elements and are
used to model systems undergoing large deformations [29].
An ongoing development of MBS is the extension towards
flexible multi-body systems (FMBS) by the integration of
flexible structures in the MBS. A common MBS approach
for modelling deformable objects or structures, is the finite
segment method. It is widely used to capture the motion of
cables [30], or the flexible behaviour of human bodies in
crash test simulation scenarios [31]. The deformable object
is described with a set of rigid bodies interconnected by joints
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with a certain number of DOF, parametrised with appropriate
stiffness and damping coefficients [32]. This allows capturing
large displacements and deformations with low computational
costs. Major drawbacks of the rigid segment approach are the
identification of appropriate joint parameters and the selection
of the number, size, and location of the rigid segments [33].

Among FEM, MSS, and MBS many alternative approaches
beyond the scope of this paper exist for the modelling of
soft materials. It is concluded, that a trade-off between ac-
curacy and computational costs has to be found, satisfying
the requirements of a bin picking scenario. Since each of
the modelling approaches exhibits individual strength and
shortcomings, a model-based approach is always subjected
to certain limitations. Therefore, it is crucial to choose a
modelling approach matching the specific requirements of a
bin picking scenario. A classification of deformable objects,
categorizing types with similar characteristics, enables us to
derive requirements for the object model and helps to evaluate
the applicability of a chosen modelling approach. Thus, the
selection of a modelling approach as well as a classification
of deformable objects is discussed in the following.

III. CONCEPT FOR SIMULATION BASED HANDLING OF
DEFORMABLE OBJECTS

The objective of our approach is to investigate research
questions concerning the automated handling of deformable
objects within the framework of a bin picking scenario. This
implies specific requirements for the subtasks of localisation
and manipulation, since in contrast to bin picking of rigid
objects, the shape of the deformable object is not explicitly
defined. The missing information about the deformed state is
supposed to be provided by a multi-body modelling approach,
capturing the gross deformation behaviour of the soft material.
This modelling approach is described in Subsection III-A.
Since a generic solution for bin picking does not even exist
for rigid objects, a general solution for bin picking arbitrary
deformable objects is not anticipated to be found straight
away. Thus, restraining our approach to certain classification
criteria is discussed in Subsection III-B. In Subsection III-C,
the overall system setup is envisaged, which will serve as
framework for future research.

A. Approach for modelling and simulation

As described in Section II, the implemented localisation
algorithms for bin picking of rigid objects rely on a given
data model in form of CAD data or geometric primitives.
These data models are matched with acquired sensor data for
the estimation of pose and orientation. In case of deformable
materials, these kinds of data models are merely available for
a reference configuration, but by no means for the deformed
state. This leads to the question, how the deformed state
can be described and how visual data and image processing
techniques can be employed to estimate the deformation.

We propose a simulation-based approach incorporating an
appropriate object model to provide the necessary information
about deformed object. From the perspective of localisation,
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Figure 2. Basic idea of the segmentation of deformable objects into rigid
segments to capture the gross deformation behaviour. A deformed geometry
(left) as well as a multi-body model (right) of a banana plug is depicted.
The deformation behaviour of the wire is modelled coarsely with multiple
joints between the rigid segments. The computational costs are rising with
the number of joints.

two major requirements concerning the simulation can be de-
rived. At first, the model should capture the large deformation
behaviour, since small deformations of the objects can be
compensated within adjustments of the matching algorithm by
using an approach as [12]. Hence, capturing the large defor-
mations is key for successful matching. Secondly, the model
must not require too much computational power because a vast
amount of possible object configurations have to be computed
and compared with the acquired sensor data within minimal
time, satisfying the demand of low cycle times, for instance
in a serial production scenario.

The FEM and MSS models presented in Subsection II-B do
not meet these requirements obviously. The FEM approach
is subjected to high computational costs while the MSS
models satisfy the computation time requirement, but do not
capture large deformation. Therefore, a multi-body modelling
approach is considered to capture the crucial characteristics
of the deformation behaviour of a deformable object. An
illustration of the basic idea is given in Fig. 2. This approach
provides a model of a largely reduced order compared to a
finite element model. Thus, it allows meeting the requirements
of low computation times.

To overcome the major drawback of the identification of
appropriate joint parameters as described in Subsection 1I-B,
a parameter learning approach in the manner of [25] can be
employed. The idea is to utilise acquired sensor data, such
as force feedback and visual data, to obtain reasonable model
parametrisation. Further challenges are the derivation of an ap-
propriate topology of the MBS to characterise the deformation
appropriately, and the reconstruction of the outer appearance
once the structural deformation is known. Approaches from
the field of computer graphics allowing the skeletisation of 3D
geometries as presented by [34] and [35] may help to resolve
these problems.

Due to the huge variety of soft material properties and
geometries, the proposed MBS approach is constrained only to
specific application scenarios. To account for the application
of bin picking, a classification regarding the different subtasks
according to Fig. 1 is given in the following.
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B. Classification of deformable objects with respect to bin
picking

A first approach towards a classification of deformable
objects is given in [36]. They define five classes of objects
with respect to a manipulation task, under the assumption
of isotropic material. The applied force and the resulting
deformation are used as measures and matched with the
material properties of elastic and plastic deformation. This
leads to a classification describing the feasibility of the manip-
ulation task from simple (no deformation) to complex (high
plastic deformation). The approach comprises a classification
according to the material properties implicitly, where a soft
material is characterised by its underlying constitutive model.

In [37] a classification based on the shape geometry of
flexible materials is given. Deformable objects are divided in
linear (e.g. cable, wire), sheet-like (e.g. fabric, garment) and
three dimensional (e.g. soft tissue, meat) entities. Afterwards
these classes of flexible materials are related to specific indus-
trial manipulation tasks covering the perspective of automated
handling.

However, the given classifications are not sufficient with
respect to a simulation-based approach towards bin picking,
since they focus mainly on the aspects of manipulation and
handling. From the perspective of our approach it is necessary
to consider criteria from the tasks of localisation and modelling
as well.

In terms of localisation, the subtasks of data acquisition,
image processing, and matching pose additional requirements
towards a classification. For the data acquisition, the surface of
the deformable object is a major concern. Characteristics such
as reflectance influence the availability and quality of acquired
sensor data. For the subsequent image processing, features
such as textures or patterns facilitate the object identification
and the pose estimation, since they constrain the search tree of
possible object configurations. To match the acquired sensor
data with a computational model, it is required to differentiate
between determined and arbitrary geometries of deformable
objects. A determined geometry excels by the availability of
a reference geometry as for example industrial manufactured
parts, e.g. hoses with defined diameter and length. Whereas no
such reference exists for objects with arbitrary geometries, e.g.
natural products such as fruits with varying size. Hence, the
availability of additional information induced by a reference
geometry has to be considered within a classification as well.

Concerning the proposed MBS modelling approach, as
described in Subsection III-A, a classification has to respect
the topology of the object. Considerations about the spatial
arrangement and symmetries of the model allow to simplify
the real world scenario by modelling linear, plane or spatial
topologies with corresponding DOFs in one, two or three
dimensions, and therefore are a measure for the complexity
of the modelling approach.

A classification with respect to bin picking, based upon the
introduced preliminary studies by [36] and [37], requires addi-
tional criteria to classify deformable objects. It has to account
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Figure 3. Classification of deformable objects according to important char-
acteristics with respect to a simulation-based approach towards bin picking

for the different perspectives of a bin picking scenario form
manipulation over localisation to modelling. A classification
scheme for our simulation-based approach is given in Fig. 3.

C. Concept for a simulation-based bin picking system

Based upon the previously discussed classification criteria,
we are able to derive requirements for the development of a
bin picking system coping with deformable objects.

The physical system setup is derived from common robot
cells used for bin picking applications as described in [38],
[39]. The soft objects, as work pieces, are supplied in a bin,
which could be sorted properly or placed chaotically. It should
be noticed that the difficulty of the bin picking task scales
with the derangement of the work pieces. In our research,
we intend to achieve localisation and gripping of disordered
work piece arrangements since this is the most application
related situation [11]. Visual sensor data are acquired via an
appropriate camera system. The objective of the bin picking
system is to manipulate the deformable objects in a defined
way. Therefore, a variable setup consisting of a storage place
and an assistive device is considered. In this context, the stor-
age place is equivalent to a device representing a manipulation
objective as for example a hole for a peg-in-hole task or a
hole fixture [1], [40]. The purpose of the assistive device is to
provide assistance for the manipulation task because it is often
difficult or impossible to handle deformable objects gripping
only on one position over their entire geometry. The design
of the assistive device is dedicated to a certain manipulation
task. It can be a fixture or a kinematic with various degrees
of freedom respectively a second robotic device [41].

The core of the system consists of a commercially available
robot with a serial kinematic of at least 6 DOFs, a robot
control and a software framework for the control of the
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Figure 4. Overview of the proposed concept for handling deformable objects with a robot within a bin picking scenario.

bin picking task. The concept of the software framework
is depicted in Fig. 4. 3D image data are acquired for the
purpose of localisation referring to successfully implemented
bin picking applications such as [8], [42]. The sensor data are
then processed in an image processing unit extracting useful
information, such as interesting points or features, for the
matching algorithm by using the approach in [11]. Matching
the extracted information from the image processing with our
modelling approach from Subsection III-A is the subject of
our ongoing efforts.

Presuming a reliable matching algorithm, able to supply
the deformable object’s pose, we can determine appropriate
gripping positions and generate an according trajectory. For the
trajectory generation the deformation behaviour of the object
as well as the kinematic of the robot are considered. The
planned trajectory is then fed forward to the robot control,
whereby we assume the robot to follow the planned trajectory
as long as it operates within its technical specifications.

Returning to the learning strategies, mentioned in Subsec-
tion III-A, force feedback along with the visual data of the
deformable object and the position feedback of the robot
drives are coupled to estimate appropriate parameters for the
multi-body model. This enables the system to adapt the model
parametrisation depending on the given material characteristics
of the handled objects.

To cope with the computationally demanding tasks within
the image processing, the model computation, the matching
process and the learning algorithms, a parallel computational
architecture is considered using state-of-the-art multi-core
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processes. Especially, the multifold MBS simulation and the
matching process are anticipated to be well parallelisable tasks.
The computation can either be done locally with the aid of
several graphic adapters or in a cloud environment benefiting
from the scalability and availability of computational power.

IV. DISCUSSION AND CONCLUSION

A concept of a system setup for a bin picking scenario,
pursuing various research questions in the field of the in-
teraction between rigid robots and deformable objects, has
been presented. Within this context, we proposed our approach
from the manufacturing point of view. The requirements
for the system setup are acquired from a literature review
regarding successfully implemented bin picking applications
for rigid objects and state-of-the-art simulation techniques of
soft tissue modelling approaches. For the simulation-based
approach a multi-body model, representing a model of largely
reduced order to facilitate computation, is proposed. To rate
the complexity of bin picking a specific deformable object
and evaluate the resulting requirements for the respective bin
picking system, a classification scheme was developed. At
last, the envisaged framework for the bin picking system is
presented. Further efforts will be made to set up the proposed
system.

For the purpose of formulating a concrete use case that leads
our research towards the fundamental problems of handling
soft materials, deformable linear objects such as cables and
wires will be the focus of our research. This class of objects
is especially suited for the proposed multi-body modelling
approach because they premise a desired chain-like structure.
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