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Abstract—In order to control the interaction of industrial
robots with soft materials many computationally-intensive sub-
tasks have to be performed in parallel, such as material simula-
tions, control policy optimization or path planning among many
others. Since the robot control cannot process the amount of
information needed for those tasks, the whole system needs to be
split up in two parts: the physical system and the computationally
demanding software that runs exclusively in a cloud environment.
We analyse the requirements, make the assumptions and define
the scope of the system before proposing a novel cloud-based
control architecture for industrial robots to manipulate soft
materials. A system is set up and evaluated with future challenges
identified for the further specification and implementation of the
proposed control architecture.

I. INTRODUCTION

Soft materials are characterised not only by their low
stiffness, but also highly nonlinear behaviours [1]. This is
why an efficient, robust and safe interaction between robots
and soft objects has not been as highly automated as it is
for an industrial robot to manipulate hard objects. A multi-
body system that consists of a robot and soft object cannot
only be defined by structured geometries, contact position
and contact forces like those for rigid bodies. To achieve an
efficient, robust and safe automation, a better understanding of
the behaviours of soft materials related to the robotic motion
planning and control is in order. Furthermore, the traditional
local control concepts show weaknesses in handling tasks with
soft objects: they are mostly designed for one special task and
do rarely use any information of the object to manipulate [2].

Simulations of the robot-soft-object interaction could pro-
vide new insights in interaction mechanisms and manipulation
requirements, which would further be used for simulation-
based trajectory planning, control optimisation or reinforce-
ment learning of gripping strategies. The simulation itself,
as well as the tasks that use it, require a lot of computation
power, especially when the constitutional models of the soft
materials need being simulated. To take advantage of the
additional information, a cloud-based robot control setup is
considered, where the overall control architecture is split up
in one computationally expensive part in the cloud and the
local robot-gripper control system. Due to the flexibility of
cloud services, the computing capacity can be scaled with the
requirements.

To further elaborate those questions, the Integrated Research
Training Group (IRTG) Soft Tissue Robotics has been set
up as a multi-disciplinary joint research programme between
the universities of Auckland and Stuttgart, where this project
is a part of. Within the three main categories simulation,
automation and biological technical concepts soft material be-
haviour and interaction will be investigated, especially focused
on biological soft tissues and technical applications with soft
materials. Interdisciplinary approaches will be used with the
connection of different participating research fields to over-
come problems in soft objects handling not with specialised
solutions as kinematics, rather with a general understanding
of the underlying problem.

Applications of the interaction with soft materials may lie in
gluing of door seals in car manufacturing and cable handling,
as well as fruit harvesting or meat processing. Also, wiring
processes in switch cabinets, currently taking on average 50%
of the total building time, may profit from automated handling
with the explicit consideration of deformable materials [3].

The rest of the paper is organised as follows. As a pre-
liminary step the related literature is reviewed in context of
this project part in Section II. The system architecture con-
cept and requirements definition are specified in Section III.
Finally, some concluding remarks and an outlook on the future
intentions of this project are given in Section IV.

II. LITERATURE REVIEW

The following section gives a short overview over recent
literature in the fields of soft materials modelling, industrial
robots control and cloud-based control that are directly rele-
vant to the proposed project.

A. Soft Materials Modelling and Simulation

There exist two distinguished methods to describe the
behaviour of soft materials, which are model-free and model-
based approaches. Model-free methods have to compensate the
lack of a model with utilisation of sensor data in observers,
as e. g. in [4], [5]. Model-based methods can be formulated
as continuous system or discretised in space. Continuous
approaches, based on different assumptions of continuum
mechanics, result in constrained partial differential equation
(PDE) systems [6]–[8]. Since mostly unsolvable analytically,
they have to be discretised either in space with finite element
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method (FEM) [9], [10] or finite difference method (FDM),
and then treated as coupled ordinary differential equations
(ODEs) systems [6], [11]. Also, directly discretised, heuristic
methods exist as [12] or mass-spring models with optimised
meshes [13], or even through discretisation of autowave prop-
agation in the material [14].

Grouping of soft materials through classification is in-
troduced to later generalise tested solutions. Firstly, this
can be done by distinguishing the underlying material
properties as elasticity (elastic, inelastic, elastoplastic),
time-dependency (time-variant, time-invariant) and isotropy
(isotropic, anisotropic) [7]. Secondly, the distinction can be
made by geometry dimensions. A one-dimensional object like
a rope may be modelled with a PDE where the local derivation
is one-dimensional, too, whereas a soft body’s local derivations
depend on all three spatial dimensions. This is inherently done
e. g. in [15]–[17]. A third, heuristical method for classifying
soft tissues is introduced by Heinrich et al. by distinguishing
different regions on a force-deformation diagram which are
adapted dependent on the executed task [18].

B. Control architectures for industrial robots

In current industrial robotics a common control architecture,
pictured in Fig. 1, has been well established and is widely
used with minor modifications. Current efforts affecting this
common architecture are on one hand made in the direction
of multi-robot cooperation [19], where the robot control (RC)
is used for the actuation of all participated robots. Single
modules of this scheme are further improved, as for the joint
control e. g. in [20], [21].
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Figure 1. Signal flow diagram of a common robot control architecture, cf.
[22].

Reasoning in robot abstraction and a resulting layered
system architecture can be seen in [23]. Here, system parts
are consequently encapsulated to meet the requirements of
formulating complex tasks on task-level. Furthermore, the

modular approach decouples the general solution of a task
from the underlying robot. Further extensions of this approach
into the field of service-oriented and cloud-based control
architecture are described in the following section.

C. Cloud-based control architectures

Cloud-based control architectures are primarily in the focus
of research with the topic of smart manufacturing [24]. An
overview over challenges and requirements of cloud-based
manufacturing is given in [25], where the basic mechanisms
of cloud-computing are transferred to the field of cloud-
manufacturing and essential foundations for manufacturing as
a service (MaaS) are formulated.

Early research in cloud robotics has been done in the robot
brain project [26], even before a concrete definition of the term
cloud has been defined. A generic robot cloud storage has
been developed with RoboEarth [27], a cloud communication
platform with binding to the open-source robotics platform
robot operating system (ROS) has been realised with Rapyuta
[28]. But generally, the additional benefit examined in research
for cloud robotics is primarily concerned with common data
access and knowledge sharing. Recent service-oriented ap-
proaches go beyond and offer cloud-based path-planning [29]
and even cloud-based control, where the robot control part
from Fig. 1 is externalised to a cloud-environment [30], [31].
Since control as a cloud-service requires short cycle times and
the theoretical signal speed is limited by the speed of light
in optical fibres, the distance to used cloud servers becomes
important. This leads to the use of location-aware cloud servers
called fog cloud [32].

Recent work at our institutes has focused on cloud-based
machine tool control [33], [34], robot control with an inte-
grated robot simulation [35], production management [36], de-
veloping an ontology for service-oriented business interactions
data model [37], [38], assembly optimisation [39], MaaS [25],
[40] and the communication mechanisms that form its basis
[41].

III. CONCEPT FOR A CLOUD-BASED CONTROL
ARCHITECTURE

Based on the literature review from above, this section
formulates a concept for the new control architecture. This
is accomplished by deriving system requirements in Subsec-
tion III-C from the use cases defined in Subsection III-A
and the scope of the proposed system, which is outlined in
Subsection III-B. A usecase example of cable handling with
a robot arm is described in Subsection III-D.

A. Use cases

Two main categories of use cases, also shown on the UML
diagram in Fig. 2, are to be considered. The first one consists
of motion planning, where the internal forces and deformations
of the soft material have to be predicted beforehand, or
accurately estimated online and used for control. Goals of
this use case may be to plan a motion around obstacles for a
soft object handled by a robot with, additionally to traditional
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collision avoidance problems, neither damaging the object nor
the obstacles, even under dynamic deformation of the objects
during the task. This may be the case for transporting cables
from one point to another, where swinging of loose ends has
to be considered in trajectory planning. The second use case
aims for different control tasks that may be formalised with
the soft material, where the soft object may be treated as an
extension of the robot geometry. This includes the requirement
of bringing static poses (pose: position and orientation) on
a soft material close to a pose in task space (⊂ R6). The
target pose may be static or moving itself for a motion control
application, also the poses on the soft material may move on
the local coordinate system of itself, as it is the case for gluing,
where the location to glue moves on the object during the
process. Moreover, this use case contains the control of forces
at points on the border of soft materials, which is relevant
for tasks as inserting a cable into its connector where force
sensitive handling is required.

Soft Objects Path Planning
Soft Objects Path Planning

«include»

«include»

«include»
«include»

Identify/learn
parameters

Task control

Simulate system
behaviour

Learn task
strategies

Learn motion
strategies

Motion planning

Motion planner

Task controller

Figure 2. UML use case diagram of central use cases for path planning soft
objects. Implicitly contained is the need for a simulation environment. The
central use cases, motion planning and task control, are highlighted.

The main use cases, motion planning and task control,
are common in that they do not modify the behaviour of
the RC rather set the trajectory of the robot-material system.
The difference between them is mainly characterised with the
knowledge of internal state variables in motion planning. The
motion planning also may access information from the soft
object simulation, whereas the task control solely relies on
feedback. This is also shown in Fig. 2, where the task control
does not need to include the system’s simulation.

Both main use cases require knowledge about the behaviour
of the material. This may be represented in variously de-
tailed models of the soft materials, beginning from simple
material parameter sets, such as shear modulus and modulus

of elasticity, up to complex FEM models. Motion planning
algorithms may directly use the model information to predict
the material’s behaviour during the planned motion. In order
for task control algorithms to use the model information to
access directly non-accessible state variables of the soft object,
such as internal stress and strain, the real-time requirements
due to the cycle times of the task control have to be met.
This implies the requirement of simple and real-time capable
models for soft objects. If and for which classes of soft ma-
terials such drastically reduced models exist and are feasible
with current technologies is still not clear today and also the
research topic of another project within the IRTG Soft Tissue
Robotics. Hence, the inclusion of simulation information in
task control algorithms will not be investigated for now.

Once a model is parameterised and evaluated against the
real soft material it can further be used e. g. for extracting
and testing strategies for gripping or motion planning. As
such applications also need a simulation model of the robot
and gripper, the latter ones also have to be included in the
simulation environment. This simulation setup allows to run
many simulations in parallel at the same time to shorten the
duration of all not real-time processing tasks (e. g. trajectory
planning) with the number of simulation instances used.

B. System boundaries and assumptions

Since the overall goal lies in advancing the soft material
interaction with non-specialised robots, the chosen scope
excludes inter-company and planning aspects of cloud com-
puting, such as ordering mechanisms, billing and resource
planning tasks.

The robot chosen is restricted to traditional serial kinemat-
ics. For simplicity reasons, the RC together with the basic
kinematics of the robot (including the gripper) are regarded
as a black-box system, taking external trajectory signals and
following them with sufficient accuracy under the assumption
that the given trajectory is realizable with respect to the
chosen robot kinematics and dimensions, e. g. the maximum
acceleration of the joints is never reached. Thus, the RC-robot
system’s dynamics, also shown in Fig. 3, do not have to be
simulated and a simulation of the soft object including the
constraints of gripper trajectories is sufficient.

RC Basic Robot Kinematics Gripper
uR

uG

rG
Soft material

interaction
x∗
R,

x∗
G

xG

xR

Figure 3. System boundary of neglected dynamics between robot and RC
with desired robot/gripper states x∗

R/x∗
G, real robot/gripper states xR/xG,

control inputs for robot and gripper uR and uG and gripper pose rG.

Furthermore, to focus on soft objects handling the connected
research topics of real-time cloud-control, human-robot inter-
action are not treated within this project.
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Figure 4. Overview of the communication flow of the planned system setup for handling Soft Tissues with a serial robot kinematics. Non real-time components
are outsourced to a modular cloud environment.

C. System setup

The general system architecture is derived from the use
cases and system boundaries of the previous sections, as
well as general cloud architecture concepts proposed in [25],
[42]. The main novelty of this setup lies in the integrated
soft material simulation, which is accessed by other system
components to interact with soft objects without the need
for a special robot kinematics. A diagram of the overall
system’s communication is shown in Fig. 4. Robot sensor
data, as joint angles and image-based sensor data of soft
object position and deformation are processed in the sensor
data acquisition and stored in a database. The parameter
adaption component optimises the model parameters of the
simulation by validation against stored sensor data. Strategies
can be learned with multiple soft-object simulations whose
outcomes are subsequently evaluated with respect to a policy
function. Afterwards, they build a rule set for task-planning in
the trajectory generation. Task planning for the robot motion
is then accomplished by the two general use cases motion
planning and task control identified in Subsection III-A. The
motion planning task also runs simulations for accessing the
internal material state, whereas the task control does not. Since
some tasks require both, motion planning and task control,
they are planned to be interoperable.

System components to be outsourced to the cloud are
determined by their need for real-time computation. Every
component, that does not need to be run cyclic in real-
time runs as a service in the cloud. Since the trajectory
generation component is planned to make use of the (non

real-time capable) soft material simulation it can be realised
as a cloud component itself. As communication times cannot
be guaranteed in this case, the possibilities of the trajectory
generation are also limited to either a fully offline generation
of the whole trajectories before the robot’s task or a quasi-
static approach with enough trajectory values buffered in a
look-ahead storage such that the execution can be ensured
under usual network conditions. Still, in case that the network
latency is higher than planned, the execution of the task may
have to be interrupted with the quasi-static approach.

To meet changing requirements of components, the system
has to be designed extensible and modular. A loose coupling
between the different modules is intended to minimise the
communication effort and simplify the exchanging of modules.

The communication itself can be realised with decentralised
machine to machine protocols. Recent protocols, such as Open
Platform Communications Unified Architecture (OPC UA)
[43] support a publisher subscriber model, where participants
are able to subscribe for specific information channels. Data
to be exchanged in the communication process have to be
specified, which is challenging for the dynamic contact points
between the gripper and the soft object.

Finally, the interfaces that will be provided by system
parts have to be developed in a way that enables their easy
exchange. Different abstraction layers are introduced in each
component as suggested by [23], [25] and sketched in Fig. 5.
Software and hardware elements as well as their capabilities
are abstracted by the resource layer, where common interfaces
for higher level access are provided. The virtual service layer
integrates different resources to services that can be accom-
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Figure 5. Layered architecture layout for abstraction and encapsulation of
system components as described in [25].

plished with their use. For example, the parameter adaption
from Fig. 4 is provided in the virtual service layer and ac-
cesses components from the resource layer, such as the model
parameters database and different soft object simulations. In
addition, available participants in the resource layer have to
be detected and integrated into the overall system, which is
also a task of the virtual service layer. The global service
layer operates the overall interaction of the cloud. Offering
services to its users and role-management is part of it as well
as management of computation resources and accounting tasks
as billing of customers for their used services, which will
not be part of this project. The application layer connects to
the services offered by the global service layer and provides
applications directly to the user.

The software components may be virtualised by running
them either in virtual machines or in containersproviding a
packaged version of the software itself and all of its dependen-
cies. Such virtualised components may be cloned for running
the same simulation in multiple instances and can be integrated
in different cloud server environments without much additional
effort. Furthermore, multiple components are able to run on
the same computer for optimal processing load and, together
with a decentralised network communication protocol, also for
shorter inter-component communication times since messages
on the same computer can be passed via local loopback.

D. Application on a wiring setup

The scenario of a robot arm with a wiring task, e. g. for
a switch cabinet, is described subsequently to exemplify the
general system setup, where the soft objects to handle are
cables. A first step consists of a visual detection of the cable
to handle and the determination of suitable grasping points.
The grasping motion is planned and executed. The only part
needing knowledge of the cable’s material properties is the
closing motion of the gripper that has to be force controlled
to avoid slipping or cable damage.

As soon as the robot holds a cable, the cable’s simulation
is incorporated as a key part in the system. The two typical
tasks after gripping are laying the cables in cable channels and
inserting a cable end into a connector. Cable laying is a control
task in which the target point is moving along the material’s
length coordinate as the point to lay down next changes over
time, cable end insertion is a control task with fixed point of

interest. To reach the start pose for the control tasks, motion
planning is used, which may be under several constraints as
minimizing the transition time and simultaneously considering
the kinematic and dynamic capabilities. Since the cable ends
protrude from the gripper, its motion is to be considered in
any planning step. Strategies for those tasks and the required
motion planning are calculated with multiple instances of the
cable simulation beforehand and are applied to the current
situation. Sensor data is collected and stored simultaneously to
task execution to improve the accuracy of the cable simulations
via machine learning.

IV. CONCLUSIONS

An approach for a service-oriented clod architecture tailored
for the interaction of industrial robots with soft objects has
been presented as thematic positioning of this project part
within the IRTG Soft Tissue Robotics research programme.
Since the main topic of the IRTG lies on a better understanding
of the behaviour of soft materials, the central element of the
proposed system setup is chosen to be a simulation, which
is able to predict the material’s behaviour needed for robot
motions provided by motion planning or learning constituents.
Massive parallelisation in the cloud is brought up to reduce
calculation times. Abstraction and virtualisation are introduced
as architecture methodology for defining replaceable and ex-
changeable software and hardware components, which have
to be integrated in the cloud environment. Additionally, these
concepts allow to later extend the system to adapt to further
requirements.

A. Outlook

The next steps lie in concretizing the control architecture
regarding the definition of single system components and
interfaces and embedding them into their according abstraction
layers of Fig. 5.

Together with other IRTG projects concerned with machine
learning and object localisation we intend to advance in the
direction of handling tasks with deformable linear objects
[15], [17], as cables and wiring applications at first, where
the principal location dependency in the underlying partial
differential model equations is only one-dimensional. The
overall concept is however planned to be kept as universal
as possible, that the general approach can be transferred, e. g.
to agricultural and biomedical use-cases.
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